I TĂVINÎ MINÎ DI MANÎ KWÎ KUN KUN ÛNDI ÛNDI ÛNDI ÎNDI ÎNDI ÛNDI ÛNDI ÛNDI ÛNDI ÛNDI ÛNDI ÛNDI

Seat No.

HN-003-1162001 M. Sc. (Sem. II) Examination April - 2023 Mathematics : CMT-2001 (Algebra-II)

Faculty Code : 003 Subject Code : 1162001

Time : $2\frac{1}{2}$ / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Each question carries equal marks.
- (3) Figure on the right indicate allotted marks.
- 1 Answer any seven short questions.

7×2=14

(i) Prove or disprove that, if f(x) be a polynomial of degree 2

or 3 in a polynomial ring F[x] over a field F, then f(x) is reducible over $F \Leftrightarrow f(x)$ has a root in F.

- (ii) Prove or disprove that, $x^3 + 3x + 2 \in \mathbb{Z}_7[x]$ is irreducible over \mathbb{Z}_7 .
- (iii) Define term : Monic polynomial and justify that every monic polynomial is a primitive polynomial.
- (iv) Define terms : Extension of fields and finite field extension (finite extension).
- (v) Write down the minimal polynomial of the complex number $\sqrt{2} + \sqrt{3i}$ over Q.
- (vi) Write down two definitions : Perfect field and Prime field.
- (vii) Write down examples of two algebraic field extensions, which are separable extensions.
- (viii) Prove or disprove that, the set of generators of an R-module need not be unique.
- (ix) Let $\{N_{\lambda}\}_{\lambda \in \Lambda}$ be a family of R-sub modules of an R-module

M. Prove that $\bigcap_{\lambda \in \Lambda} N_{\lambda}$ is also an R-sub module of M.

(x) For a ring R, define R-sub module of an R-module M. HN-003-1162001] 1 [Contd...

- 2 Attempt any two.
 - (a) Let ${}^{E}|_{F}$ and ${}^{K}|_{F}$ both are finite extensions. Prove that, ${}^{K}|_{F}$ is also finite extension.
 - (b) Let p(x) ∈ F[x] be an irreducible polynomial and degree of p(x) = n. Let ^E|_F be an extension such that α ∈ E and α is a root of p(x). Prove that, F[α] = F(α), [F(α):F] = n and {1, α, α², ..., αⁿ⁻¹} is a basis of F(α) over F.
 - (c) Prove that, every finite extension is an algebraic extension.

3 Attempt followings.

$2 \times 7 = 14$

- (1) Let ^E|_F be a finite extension and E = F(α), for some α ∈ E.
 Prove that, There are only a finite number of sub fields of E containing F, as a sub field.
- (2) Let ^E|_F be a finite extension and there are only a finite number of sub fields of E containing F, as a sub field. Prove that, E = F(α), for some α ∈ E.

OR

- **3** Attempt followings.
 - (a) Let F be a finite field. Prove that, $F^* = F \{0\}$ is a cyclic group under multiplication.
 - (b) Let F be a field and $F \{0\}$ is a cyclic group under multiplication. Prove that, F is a finite field.
- 4 Attempt any two.
 - (1) Suppose following diagram of R-modules and R-homomorphisms.
 f:K→M, g:M→L, f':K'→M',g':M'→L',α:K→K',

$$\beta: M \to M' \text{ and } \gamma: L \to L' \text{ with } f(K) = \text{Ker } \beta = \ker g \text{ and } f'(K') =$$

Ker $g' = \beta(M)$. Prove that, if α, γ & f' are 1-1 then so is β. HN-003-1162001] 2 [Contd...

2×7=14

 $2 \times 7 = 14$

- (2) Let K be algebraically closed field and p(x) ∈ K[x] be an irreducible polynomial over K[x]. Prove that degree of p(x) is 1. Also deduce that, for any f(x) ∈ K[x], with degree f(x) ≥ 1, f(x) can be split into linear factors in K[x].
- (3) Let F be a field and Char F = 0. Let n be a natural number and F contains nth root of unity. Let f(x) = xⁿ a ∈ f[x] and E is the splitting field of f(x) over F. Prove that, ^E|_F is a cuclic extension.
- 5 Attempt any two.

 $7 \times 2 = 14$

(1) Let A, B be R-sub modules of two R-modules M and N respectively. In standard notation, prove that,

$$\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}.$$

(2) Let R be a ring with unity and M is an R-module. Prove that,

M is cyclic if and only if $M \cong \frac{R}{I}$, for some left ideal *I* or *R*.

- (3) Let $|_F$ be an extension and [E:F] = 2. Prove that, $|_F$ is a normal extension.
- (4) Let ${}^{K}|_{k}$ be a cyclic extension, [K:k] = n and $G({}^{K}|_{k}) = <\sigma>$. Prove that, $\beta \sigma (\beta) \sigma^{2}(\beta).... \sigma^{n-1} (\beta) = 1$, for some $\beta \in K$ if and only if $\beta = \alpha . (\sigma(\alpha)^{-1})$, where $\alpha \in K^{*}$.

HN-003-1162001]